Ewelina Bolcun-Filas


  • M.Sc. Biology, Jagiellonian University, Krakow, Poland, 2000
  • Ph.D., Developmental Biology, Georg-August-Universitat, Institut fur Humangenetik, Gottingen, Germany, 2004
  • Postdoctoral Fellow, MRC Human Genetics Unit, Edinburgh, UK, 2008
  • Postdoctoral Associate, Department of Biomedical Sciences, Cornell University, Ithaca, NY, 2013

Research Interest

Germ cells are the only cell type that must endure extensive DNA damage in the form of programmed meiotic double-strand breaks (DSBs) during their normal development. Paradoxically, the absence of DSBs during meiosis as well as persisting unrepaired breaks are detrimental and typically result in meiotic arrest and infertility. Our research aims to understand the molecular mechanisms controlling the development of healthy gametes and how misregulation of these mechanisms can lead to reproductive disorders. In particular, we are interested in meiotic “quality checkpoints” operating in germ cells, which ensure that the correct and intact genetic information is transmitted to the next generation. The same checkpoint that monitors DSB repair during meiosis is responsible for high sensitivity of oocytes to cancer treatment. Chemo and radiation therapies can cause oocyte death and lead to premature ovarian failure and infertility. Disabling the key checkpoint kinase CHK2 preserved fertility in mice exposed to ionizing radiation, thus opening a new avenue for oncofertility research. Our goal is to further dissect the DNA damage response pathway in oocytes, helping identify additional targets for fertility preservation therapies in cancer patients.

Selected Publications

  • Terri L. Woodard, Ewelina Bolcun-Filas. Prolonging Reproductive Life after Cancer: The Need for Fertoprotective Therapies.  Trends in Cancer.  2016
  • Bolcun-Filas E, Rinaldi VD, White ME, Schimenti JC. Reversal of female infertility by Chk2 ablation reveals the oocyte DNA damage checkpoint pathway. Science. 2014 Jan 31;343(6170):533-6.

Full List of Publications