Aaron Brown

Education

A.A.: Liberal Arts, University of Maine, Orono
B.S.:  Biochemistry, University of Maine, Orono
Ph.D.: Molecular/Cellular Biology & Biochemistry, University of Maine / The Jackson Laboratory

Research

My laboratory explores research focused on harnessing the potential of brown and beige adipose tissues as therapeutic targets for combating human obesity and associated metabolic disorders. In response to cold exposure, brown and beige adipocytes undergo metabolic activation, expending stored energy in glucose and lipids to generate heat—a process known as non-shivering thermogenesis. Activated brown/beige adipose tissue has the potential to prevent obesity through increased energy expenditure and offers protection against diet-induced insulin resistance and hepatic steatosis.

iPSC-Based Therapeutic Strategies to Increase Energy Expenditure

Traditional drug-based methods to increase energy expenditure in human adipose tissue for obesity and diabetes have faced significant challenges and cardiovascular risks. As an alternative, we are exploring cell-based therapies that could supplement obese patients with additional brown or beige adipose tissue, their precursor cells, or the secreted factors derived from these cells. However, obtaining these progenitor cells from humans involves invasive procedures, and their potential for expansion and differentiation diminishes with age and weight gain. To overcome these hurdles, our laboratory has leveraged induced pluripotent stem cell (iPSC) technology, successfully reprogramming somatic cells from both normal and diabetic patients into renewable, metabolically active human beige adipocytes. These cells show promise, secreting anti-diabetic factors and serving as a potential model for developing anti-obesity and anti-diabetic therapies. Additionally, we are actively developing 3-D adipose tissue models for testing in obese/diabetic mice to assess their effectiveness in promoting weight loss and combating obesity-related diabetes.

Optogenetic control of energy expenditure

A significant hurdle in implementing adipocyte cell-based therapies is the need to maintain cell activation post-transplantation. To address this challenge, we utilize optogenetic techniques to engineer adipocytes expressing a blue light-inducible bacterial adenylyl cyclase, capable of increasing intracellular cAMP and activating thermogenesis. This cutting-edge optogenetic tool enables precise temporal, spatial, dosage, and bidirectional control of thermogenesis. Our ongoing objective involves integrating 3-D iPSC-derived beige adipocytes with miniaturized, remote-controlled, blue light wireless transmitters for transplantation testing and the development of metabolic syndrome therapies.

MicroRNA Regulation in Thermogenesis

Recent models propose that exosomes released from brown/beige fat carry diverse signaling molecules, including microRNAs, RNAs, proteins, and lipids, with potential therapeutic impacts on metabolic disorders. An intriguing and underexplored concept is that exosome secretion might offer a swift mechanism for gene expression control within the secreting cell, particularly in microRNA disposal. Supporting this idea, our research highlights a rapid release of exosomes enriched in miR-27—known for its anti-thermogenic properties—during beige adipocyte activation. To delve deeper into miR-27 and its role in thermogenesis, we have developed miR-27 null and conditional mice. Ongoing research aims to identify miR-27 target genes and assess the impact of miR-27 deletion on beige and brown adipose tissue responses to temperature shifts and high-fat diets. This exploration holds the potential for uncovering novel therapies for metabolic diseases associated with miR-27 and its target genes.

Selected Publications:

  1. Lary CW, Atkinson EJ, Spillane J, Nayema Z, Roy TA, Peters R, Scott GT, Chen H, Nagarajan A, Brown A, Motyl KJ, Monroe DG, Khosla S. Pharmacogenetic and microRNA mechanisms of beta blocker use on bone. J Bone Miner Res. 2025 Feb 2;40(2):231-240. doi: 10.1093/jbmr/zjae200. PMID: 39673185; PMCID: PMC11789393.
  2. Kesharwani D, Brown AC. Navigating the Adipocyte Precursor Niche: Cell-Cell Interactions, Regulatory Mechanisms and Implications for Adipose Tissue Homeostasis. J Cell Signal. 2024;5(2):65-86. PMC11141760.
  3. Brown AC. Optogenetics Sheds Light on Brown and Beige Adipocytes. J Cell Signal. 2023;4(4):178-186. October 21, 2023, doi: 10.33696/signaling.4.105. PMID: 37946877. PMCID: PMC10635576.
  4. Martino J, Siri SO, Paviolo NS, Garro C, Pansa MF, Carbajosa S, Brown AC, Bocco JL, Gloger I, Drewes G, Madauss KP, Soria G,  Gottifredi V. Inhibitors of ROCK kinases induce multiple mitotic defects and synthetic lethality in BRCA2-deficient cells. Elife. April 19, 2023. https://doi.org/10.1101/2022.06.24.497514.
  5. Doucette CC, Nguyen DC, Barteselli D, Blanchard S, Pelletier M, Kesharwani D, Jachimowicz E, Su S, Karolak M, Brown AC. Optogenetic Activation of UCP1-Dependent Thermogenesis in Brown Adipocytes. iScience. April 1, 2023, https://doi.org/10.1016/j.isci.2023.106560. PMID: 37123235. PMCID: PMC10139976.
  6. Brown AC, Insights into the adipose stem cell niche in health and disease. Academic Press – Scientific Principles of Adipose Stem Cells. 2022, Chapter 4, Pages 57-80.
  7. Guo Q, Kim A, Li B, Ransick A, Bugacov H, Chen X, Lindström N, Brown A, Oxburgh L, Ren B, McMahon AP. A β-catenin-driven switch in TCF/LEF transcription factor binding to DNA target sites promotes commitment of mammalian nephron progenitor cells. Elife. 2021 Feb 15;10:e64444. doi: 10.7554/eLife.64444. Erratum in: Elife. 2021 Apr 29;10: PMID: 33587034; PMCID: PMC7924951.
  8. Brown AC. Brown adipocytes from induced pluripotent stem cells-how far have we come? Ann N Y Acad Sci. 2020 Mar;1463(1):9-22. doi: 10.1111/nyas.14257. Epub 2019 Oct 1. PMID: 31573081; PMCID: PMC7078043.
  9. Brown AC, Gupta AK, Oxburgh L. Long-Term Culture of Nephron Progenitor Cells Ex Vivo. Methods Mol Biol. 2019;1926:63-75. doi: 10.1007/978-1-4939-9021-4_6. PubMed PMID: 30742263.
  10. Su S, Guntur AR, Nguyen DC, Fakory SS, Doucette CC, Leech C, Lotana H, Kelley M, Kohli J, Martino J, Sims-Lucas S, Liaw L, Vary C, Rosen CJ, Brown AC. A Renewable Source of Human Beige Adipocytes for Development of Therapies to Treat Metabolic Syndrome. Cell Rep. 2018 Dec 11;25(11):3215-3228.e9. doi: 10.1016/j.celrep.2018.11.037. PMID: 30540952; PMCID: PMC6375695.
  11. Ramalingam H, Fessler AR, Das A, Valerius MT, Basta J, Robbins L, Brown AC, Oxburgh L, McMahon AP, Rauchman M, Carroll TJ. Disparate levels of beta-catenin activity determine nephron progenitor cell fate. Dev Biol. 2018 Aug 1;440(1):13-21. doi: 10.1016/j.ydbio.2018.04.020. Epub 2018 Apr 26. PMID: 29705331; PMCID: PMC5988999.
  12. Liu P, Ji Y, Yuen T, Rendina-Ruedy E, DeMambro VE, Dhawan S, Abu-Amer W, Izadmehr S, Zhou B, Shin AC, Latif R, Thangeswaran P, Gupta A, Li J, Shnayder V, Robinson ST, Yu YE, Zhang X, Yang F, Lu P, Zhou Y, Zhu LL, Oberlin DJ, Davies TF, Reagan MR, Brown AC, Kumar TR, Epstein S, Iqbal J, Avadhani NG, New MI, Molina H, van Klinken JB, Guo EX, Buettner C, Haider S, Bian Z, Sun L, Rosen CJ, Zaidi M. Blocking FSH induces thermogenic adipose tissue and reduces body fat. Nature. 2017 Jun 1;546(7656):107-112. doi: 10.1038/nature22342. Epub 2017 May 24. PMID: 28538730; PMCID: PMC5651981.
  13. Oxburgh L, Muthukrishnan SD, Brown AC. Growth Factor Regulation in the Nephrogenic Zone of the Developing Kidney. Results Probl Cell Differ. 2017;60:137-164. doi: 10.1007/978-3-319-51436-9_6. Review. PubMed PMID: 28409345.
  14. Brown AC, Muthukrishnan SD, Oxburgh L. A synthetic niche for nephron progenitor cells. Dev Cell. 2015 Jul 27;34(2):229-41. doi: 10.1016/j.devcel.2015.06.021. Epub 2015 Jul 16. PMID: 26190145; PMCID: PMC4519427.
  15. Li Y, Liu J, Li W, Brown AC, Baddoo M, Li M, Carroll T, Oxburgh L, Feng Y, Saifudeen Z. p53 Enables metabolic fitness and self-renewal of nephron progenitor cells. Development. 2015 Apr 1;142(7):1228-41. doi: 10.1242/dev.111617. PMID: 25804735; PMCID: PMC4378244.
  16. Fetting JL, Guay JA, Karolak MJ, Iozzo RV, Adams DC, Maridas DE, Brown AC, Oxburgh L. FOXD1 promotes nephron progenitor differentiation by repressing decorin in the embryonic kidney. Development. 2014 Jan;141(1):17-27. doi: 10.1242/dev.089078. Epub 2013 Nov 27. PubMed PMID: 24284212; PubMed Central PMCID: PMC3865747.
  17. Oxburgh L, Brown AC, Muthukrishnan SD, Fetting JL. Bone morphogenetic protein signaling in nephron progenitor cells. Pediatr Nephrol. 2014 Apr;29(4):531-6. doi: 10.1007/s00467-013-2589-2. Epub 2013 Aug 20. Review. PubMed PMID: 23954916; PubMed Central PMCID: PMC3944211.
  18. Brown AC, Muthukrishnan SD, Guay JA, Adams DC, Schafer DA, Fetting JL, Oxburgh L. Role for compartmentalization in nephron progenitor differentiation. Proc Natl Acad Sci U S A. 2013 Mar 19;110(12):4640-5. doi: 10.1073/pnas.1213971110. Epub 2013 Mar 4. PubMed PMID: 23487745; PubMed Central PMCID: PMC3607044.
  19. Brown AC, Adams D, de Caestecker M, Yang X, Friesel R, Oxburgh L. FGF/EGF signaling regulates the renewal of early nephron progenitors during embryonic development. Development. 2011 Dec;138(23):5099-112. doi: 10.1242/dev.065995. Epub 2011 Oct 26. PubMed PMID: 22031548; PubMed Central PMCID: PMC3210493.
  20. Brown AC, Blank U, Adams DC, Karolak MJ, Fetting JL, Hill BL, Oxburgh L. Isolation and culture of cells from the nephrogenic zone of the embryonic mouse kidney. J Vis Exp. 2011 Apr 22;(50). doi: 10.3791/2555. PubMed PMID: 21540822; PubMed Central PMCID: PMC3169285.
  21. Oxburgh L, Brown AC, Fetting J, Hill B. BMP signaling in the nephron progenitor niche. Pediatr Nephrol. 2011 Sep;26(9):1491-7. doi: 10.1007/s00467-011-1819-8. Epub 2011 Mar 4. Review. PubMed PMID: 21373777; PubMed Central PMCID: PMC3319359.
  22. Blank U, Brown AC, Adams DC, Karolak MJ, Oxburgh L. BMP7 promotes proliferation of nephron progenitor cells via a JNK-dependent mechanism. Development. 2009 Nov;136(21):3557-66. doi: 10.1242/dev.036335. Epub 2009 Sep 30. PubMed PMID: 19793891; PubMed Central PMCID: PMC2761106.